ER-associated SNAREs and Sey1p mediate nuclear fusion at two distinct steps during yeast mating

نویسندگان

  • Jason V. Rogers
  • Tim Arlow
  • Elizabeth R. Inkellis
  • Timothy S. Koo
  • Mark D. Rose
چکیده

During yeast mating, two haploid nuclei fuse membranes to form a single diploid nucleus. However, the known proteins required for nuclear fusion are unlikely to function as direct fusogens (i.e., they are unlikely to directly catalyze lipid bilayer fusion) based on their predicted structure and localization. Therefore we screened known fusogens from vesicle trafficking (soluble N-ethylmaleimide-sensitive factor attachment protein receptors [SNAREs]) and homotypic endoplasmic reticulum (ER) fusion (Sey1p) for additional roles in nuclear fusion. Here we demonstrate that the ER-localized SNAREs Sec20p, Ufe1p, Use1p, and Bos1p are required for efficient nuclear fusion. In contrast, Sey1p is required indirectly for nuclear fusion; sey1Δ zygotes accumulate ER at the zone of cell fusion, causing a block in nuclear congression. However, double mutants of Sey1p and Sec20p, Ufe1p, or Use1p, but not Bos1p, display extreme ER morphology defects, worse than either single mutant, suggesting that retrograde SNAREs fuse ER in the absence of Sey1p. Together these data demonstrate that SNAREs mediate nuclear fusion, ER fusion after cell fusion is necessary to complete nuclear congression, and there exists a SNARE-mediated, Sey1p-independent ER fusion pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae

Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were ...

متن کامل

ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1Δ cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate...

متن کامل

The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae

The endoplasmic reticulum (ER) forms a network of tubules and sheets that requires homotypic membrane fusion to be maintained. In metazoans, this process is mediated by dynamin-like guanosine triphosphatases (GTPases) called atlastins (ATLs), which are also required to maintain ER morphology. Previous work suggested that the dynamin-like GTPase Sey1p was needed to maintain ER morphology in Sacc...

متن کامل

Structures of the yeast dynamin-like GTPase Sey1p provide insight into homotypic ER fusion

Homotypic membrane fusion of the endoplasmic reticulum is mediated by dynamin-like guanosine triphosphatases (GTPases), which include atlastin (ATL) in metazoans and Sey1p in yeast. In this paper, we determined the crystal structures of the cytosolic domain of Sey1p derived from Candida albicans. The structures reveal a stalk-like, helical bundle domain following the GTPase, which represents a ...

متن کامل

Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion

Trans-QabcR-SNARE pairing on opposing membranes is crucial for eukaryotic membrane fusion, but how selective pairs of Qabc- and R-SNARE proteins regulate membrane fusion specificity remains elusive. Here, we studied 14 purified full-length SNAREs that function in yeast endoplasmic reticulum (ER)-Golgi, intra-Golgi, endosomal, and vacuolar transport by comprehensively testing cis-QabcR-SNARE ass...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013